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Abstract

We study the problem of computing deterministic optimal
policies for constrained Markov decision processes (MDPs)
with continuous state and action spaces, which are widely
encountered in constrained dynamical systems. Designing de-
terministic policy gradient methods in continuous state and
action spaces is particularly challenging due to the lack of enu-
merable state-action pairs and the adoption of deterministic
policies, hindering the application of existing policy gradient
methods. To this end, we develop a deterministic policy gradi-
ent primal-dual method to find an optimal deterministic policy
with non-asymptotic convergence. Specifically, we leverage
regularization of the Lagrangian of the constrained MDP to
propose a deterministic policy gradient primal-dual (D-PGPD)
algorithm that updates the deterministic policy via a quadratic-
regularized gradient ascent step and the dual variable via a
quadratic-regularized gradient descent step. We prove that
the primal-dual iterates of D-PGPD converge at a sub-linear
rate to an optimal regularized primal-dual pair. We instanti-
ate D-PGPD with function approximation and prove that the
primal-dual iterates of D-PGPD converge at a sub-linear rate
to an optimal regularized primal-dual pair, up to a function
approximation error. Furthermore, we demonstrate the effec-
tiveness of our method in two continuous control problems:
robot navigation and fluid control. This appears to be the first
work that proposes a deterministic policy search method for
continuous-space constrained MDPs.

Code — https://github.com/sergiorozada12/d-pg-pd
Extended version — https://arxiv.org/abs/2408.10015

1 Introduction
Constrained Markov decision processes (MDPs) are a stan-
dard framework for incorporating system specifications into
dynamical systems (Altman 2021; Brunke et al. 2022). In re-
cent years, constrained MDPs have attracted significant atten-
tion in constrained Reinforcement Learning (RL), whose goal
is to derive optimal control policies through interaction with
unknown dynamical systems (Achiam et al. 2017; Tessler,
Mankowitz, and Mannor 2018). Policy gradient-based con-
strained learning methods have become the workhorse driv-
ing recent successes across various disciplines, e.g., naviga-
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tion (Paternain et al. 2022), video compression (Mandhane
et al. 2022), and finance (Chow et al. 2018).

This paper is motivated by two observations. First, contin-
uous state-action spaces are pervasive in dynamical systems,
yet most methods in constrained RL are designed for discrete
state and/or action spaces (Borkar 2005; Efroni, Mannor, and
Pirotta 2020; Ding et al. 2022; Singh, Gupta, and Shroff
2022). Second, the literature on constrained RL largely fo-
cuses on stochastic policies. However, randomly taking ac-
tions by following a stochastic policy is often prohibitive in
practice, especially in safety-critical domains (Sehnke et al.
2010; Li et al. 2022; Gao et al. 2023). Deterministic policies
alleviate such concerns, but (i) they might lead to sub-optimal
solutions (Ross 1989; Altman 2021); and (ii) computing them
is NP-complete (Feinberg 2000; Dolgov 2005). Nevertheless,
there is a rich body of constrained control literature that
studies problems where optimal policies are deterministic
(Posa, Kuindersma, and Tedrake 2016; Tsiamis et al. 2020;
Zhao and You 2021; Ma et al. 2022). Viewing this gap, we
study the problem of finding optimal deterministic policies
for constrained MDPs with continuous state-action spaces.

A key consideration of this paper is the fact that determin-
istic policies are sub-optimal in finite state-action spaces, but
sufficient for constrained MDPs with continuous state-action
spaces (Feinberg and Piunovskiy 2002, 2019). This enables
our formulation of a constrained RL problem with determinis-
tic policies. To develop a tractable deterministic policy search
method, we introduce a regularized Lagrangian approach that
leverages proximal optimization methods. Moreover, we use
function approximation to ensure scalability in continuous
state-action spaces. Our main contribution is four-fold.

(i) We introduce a deterministic policy constrained RL prob-
lem for a constrained MDP with continuous state-action
spaces and prove that the problem exhibits zero duality
gap, despite being constrained to deterministic policies.

(ii) We propose a regularized deterministic policy gradient
primal-dual (D-PGPD) algorithm that updates the primal
policy via a proximal-point-type step and the dual variable
via a gradient descent step, and we prove that the primal-
dual iterates of D-PGPD converge to a set of regularized
optimal primal-dual pairs at a sub-linear rate.

(iii) We propose an approximation for D-PGPD by including
function approximation. We prove that the primal-dual



iterates of the approximated D-PGPD converge at a sub-
linear rate, up to a function approximation error.

(iv) We demonstrate that D-PGPD addresses the classical con-
strained navigation problem involving several types of
cost functions and constraints. We show that D-PGPD can
solve non-linear fluid control problems under constraints.

Related work. Deterministic policy search has been studied
in the context of unconstrained MDPs (Silver et al. 2014;
Lillicrap et al. 2015; Kumar et al. 2020; Lan 2022). In con-
strained setups, however, deterministic policies have been
largely restricted to occupancy measure optimization in finite
state-action spaces (Dolgov 2005) or are embedded in hyper-
policies (Sehnke et al. 2010; Montenegro et al. 2024a,b).
This work extends deterministic policy search to constrained
MDPs with continuous state-action spaces, overcoming two
main roadblocks: the sub-optimality of deterministic policies
and the NP-completeness of computing them (Ross 1989;
Feinberg 2000; Dolgov 2005; Altman 2021; McMahan 2024).
First, we show that deterministic policies are sufficient for
constrained MDPs in continuous state-action spaces (Fein-
berg and Piunovskiy 2002, 2019), leveraging the convexity
of the value image to establish strong duality in the deter-
ministic policy space. Second, we overcome computational
intractability by introducing a quadratic regularization of the
reward function and proposing a regularization-based primal-
dual algorithm. This algorithm exploits the structure of value
functions and achieves last-iterate convergence to an opti-
mal deterministic policy. While last-iterate convergence of
primal-dual algorithms has been explored in constrained RL
(Moskovitz et al. 2023; Ding et al. 2024; Ding, Huan, and
Ribeiro 2024), existing methods focus on stochastic policies
and finite-action spaces. In control, extensive work addresses
deterministic policies in constrained setups with continu-
ous state-action spaces (Scokaert and Rawlings 1998; Lim
and Zhou 1999). However, these approaches are typically
model-based and tailored to specific structured problems
(Posa, Kuindersma, and Tedrake 2016; Tsiamis et al. 2020;
Zhao, You, and Başar 2021; Zhao and You 2021; Ma et al.
2022). Bridging constrained control and RL has also been
explored (Kakade et al. 2020; Zahavy et al. 2021; Li et al.
2023), but these methods remain model-based and focus on
stochastic policies. In contrast, we propose a model-free de-
terministic policy search method for constrained MDPs with
continuous state-action spaces.

2 Preliminaries
We consider a discounted constrained MDP, denoted by the
tuple (S,A, p, r, u, b, γ, ρ). Here, S ⊆ Rds and A ⊆ Rda are
continuous state-action spaces with dimensions ds and da,
and bounded actions ∥a∥ ≤ Amax for all a ∈ A; p(· | s, a) is
a probability measure over S parametrized by the state-action
pairs (s, a) ∈ S ×A; r, u: S ×A 7→ [0, 1] are reward/utility
functions; b is a constraint threshold; γ ∈ [0, 1) is a discount
factor; and ρ is a probability measure that specifies an initial
state. We consider the set of all deterministic policies Π
in which a policy π: S 7→ A maps states to actions. The
transition p, the initial state distribution ρ, and the policy
π define a distribution over trajectories {st, at, rt, ut}∞t=0,

where s0 ∼ ρ, at = π(st), rt = r(st, at), ut = u(st, at) and
st+1 ∼ p(· | st, at). Given π, we define the value function
V π
r : S → R as the expected sum of discounted rewards

V π
r (s) := Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s

]
.

For the utility function, we define the corresponding value
function V π

u . Their expected values over the initial state distri-
bution ρ are denoted as Vr(π) := Eρ[V

π
r (s)] and Vu(π) :=

Eρ[V
π
u (s)], where we drop the dependence on ρ for simplicity

of notation. Boundedness of r and u leads to Vr(π), Vu(π) ∈
[0, 1/(1 − γ)]. We introduce a discounted state visitation
distribution dπs0(B) := (1− γ)

∑∞
t=0 Pr(st ∈ B |π, s0) for

any B ⊆ S and define dπρ (s) := Es0 ∼ ρ[d
π
s0(s)]. For the

reward function r, we define the state-action value function
Qπ

r : S ×A → R given an initial action a while following π,

Qπ
r (s, a) := Eπ

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
.

We let the associated advantage function Aπ
r : S ×A → R be

Aπ
r (s, a) := Qπ

r (s, a) − V π
r (s). Similarly, we define Qπ

u:
S ×A → R and Aπ

u: S ×A → R for the utility function u.
A policy is optimal for a given reward function when it

maximizes the corresponding value function. However, the
value functions Vr(π) and Vu(π) are usually in conflict, e.g.,
a policy that maximizes Vr(π) is not necessary good for
Vu(π). To trade off two conflicting objectives, constrained
MDP aims to find an optimal policy π⋆ that maximizes the
reward value function Vr(π) subject to an inequality con-
straint on the utility value function Vu(π) ≥ b, where we
assume b ∈ (0, 1/(1− γ)] to avoid trivial solutions. We use
a single constraint for the sake of simplicity, but our results
extend to problems with multiple constraints. We translate
the constraint Vu(π) ≥ b into the constraint Vg(π) ≥ 0 for
g := u − (1 − γ)b, where g: S × A 7→ [−1, 1] denotes the
translated utility. This leads to the following problem

max
π ∈Π

Vr(π)

s. t. Vg(π) ≥ 0.
(1)

Restricting Problem (1) to deterministic policies poses sev-
eral challenges. Deterministic policies can be sub-optimal
in constrained MDPs with finite state-action spaces (Ross
1989; Altman 2021), and when they exist, finding them is
a NP-complete (Feinberg 2000). Problem (1) is non-convex
in the policy but can be reformulated as a linear program
using occupancy measures with stochastic policies (Paternain
et al. 2019). However, the occupancy measure representation
of (1) is a non-linear and non-convex problem when only
deterministic policies are considered (Dolgov 2005). Finally,
multiple policies can achieve the optimal value function V π⋆

P
while satisfying the constraint. We denote the set of all maxi-
mizers of (1) that attain V π⋆

P as Π⋆. To address these points,
we observe that deterministic policies are sufficient in con-
strained MDPs with continuous state-action spaces under the
following assumption (Feinberg and Piunovskiy 2002, 2019).
Assumption 1 (Non-atomicity). The MDP is non-atomic, i.e.,
ρ(s) = 0 and p(s′ | s, a) = 0 for all s, s′ ∈ S and a ∈ A.



Assumption 1 is mild in practice. Since stochastic pertur-
bations are common in physical systems with continuous
state and action spaces (Anderson and Moore 2007), the
probability measures ρ and p(· | s, a) are normally atomless,
i.e., for any measurable set B ⊆ S with probability mea-
sures ρ(B) and p(B | s, a), there exists a measurable subset
B′ ⊂ B that has smaller non-zero probability measures
ρ(B) > ρ(B′) > 0 and p(B | s, a) > p(B′ | s, a) > 0 for
any s ∈ S and a ∈ A. In other words, the transition probabil-
ity and the initial probability do not concentrate in a single
state (Feinberg and Piunovskiy 2019). When a constrained
MDP is non-atomic, only considering deterministic policies
is sufficient (Feinberg and Piunovskiy 2019). Specifically,
let V (π) := [Vr(π) Vg(π) ]

⊤ denote the vector of value
functions for a given policy π. We define a deterministic
value image VD := {V (π) |π ∈ Π}, which is a set of all at-
tainable vector value functions for deterministic policies. We
denote by VT a value image for all policies. The deterministic
value image VD and the value image VT are equivalent under
Assumption 1 for discounted MDPs (see Lemmas 2 and 4
in Appendix B). Therefore, the optimal value function of a
non-atomic constrained MDP is contained in the determin-
istic value image VD. Furthermore, the deterministic value
image VD is a convex set, even though each value function
V (π) ∈ VD is non-convex in policy π (see Lemmas 2 and 3
in Appendix B). These observations are summarized below.
Lemma 1 (Sufficiency of deterministic policies). For a non-
atomic discounted MDP, the deterministic value image VD is
convex, and equals the value image VT , i.e., VD = VT .

2.1 Zero Duality Gap
With the convexity of the deterministic value image VD in
hand, we next establish zero duality gap for Problem (1). We
begin with a standard feasibility assumption.
Assumption 2 (Feasibility). There exists a deterministic
policy π̃ ∈ Π and ξ > 0 such that Vg(π̃) ≥ ξ.

We dualize the constraint by introducing the dual variable
λ ∈ R+ and the Lagrangian L(π, λ) := Vr(π) + λVg(π).
For a fixed λ, let Π(λ) be the set of Lagrangian maximizers.
The Lagrangian L(π, λ) is equivalent to the value function
Vλ(π) associated with the combined reward/utility function
rλ(s, a) = r(s, a) + λg(s, a). The dual function D(λ) :=
maxπ∈Π Vλ(π) is an upper bound of Problem (1), and the
dual problem searches for the tightest primal upper bound

min
λ∈R+

D(λ). (2)

We denote by V λ⋆

D the optimal value of the dual function,
where λ⋆ is a minimizer of the dual Problem (2). Despite
being non-convex in the policy, if we replace the determin-
istic policy space in Problem (1) with the stochastic policy
space, then it is known that Problem (1) has zero duality gap
(Paternain et al. 2019). The proof capitalizes on the convexity
of the occupancy measure representation of (1) for stochastic
policies. However, this occupancy-measure-based argument
does not carry to deterministic policies, since the occupancy
measure representation of Problem (1) is non-convex when
only deterministic policies are used (Dolgov 2005). Instead,

we leverage the convexity of the deterministic value image
VD to prove that strong duality holds for Problem (1); see
Appendices A and C.2 for more details and the proof.
Theorem 1 (Zero duality gap). Let Assumption 1 hold. Then,
Problem (1) has zero duality gap, i.e., V π⋆

P = V λ⋆

D .
Theorem 1 states that the optimal values of Problems (1)

and (2) are equivalent, extending the zero duality gap result in
(Paternain et al. 2019) to deterministic policies under the non-
atomicity assumption. However, recovering an optimal policy
π⋆ can be non-trivial even if an optimal dual variable λ⋆ is
obtained from the dual problem (Zahavy et al. 2021). The root
cause is that the maximizers of the primal problem Π⋆ and
those of the Lagrangian for an optimal multiplier Π(λ⋆) are
different sets (Calvo-Fullana et al. 2023, Proposition 1). To
address this, we employ Theorem 1 to interpret Problem (1)
as a saddle point problem. Zero duality gap implies that an
optimal primal-dual pair (π⋆, λ⋆) is a saddle point of the
Lagrangian L(π, λ), and satisfies the mini-max condition
L(π, λ⋆) ≤ L(π⋆, λ⋆) ≤ L(π⋆, λ) ∀(π, λ) ∈ Π× Λ,

where λ is bounded in the interval Λ := [0, λmax], with
λmax := 1/((1 − γ)ξ); see Lemma 9 in Appendix B. In
this paper, we refer to saddle points that satisfy the mini-max
condition for all pairs (π, λ) ∈ Π×Λ as global saddle points.
Our main task in Section 3 is to find a global saddle point of
the Lagrangian L(π, λ) that is a solution to Problem (1).

2.2 Constrained Regulation Problem
We illustrate Problem (1) using the following example

max
π∈Π

E

[ ∞∑
t=0

γt
(
s⊤t G1st + a⊤t R1at

)]
(3a)

s. t. E

[ ∞∑
t=0

γt
(
s⊤t G2st + a⊤t R2at

)]
≥ b (3b)

− bs ≤ Csst ≤ bs, −ba ≤ Caat ≤ ba (3c)
st+1 = B0st +B1at + ωt, s0 ∼ ρ (3d)

where B0 ∈ Rds×ds and B1 ∈ Rds×da denote the system dy-
namics, ωt is the standard Gaussian noise, ρ is the initial state
distribution, and G1, G2 ∈ Rds×ds and R1, R2 ∈ Rda×da

are negative semi-definite reward matrices. The constraint
threshold is b, with Cs ∈ Rds×ds , Ca ∈ Rda×da , bs ∈ Rds ,
and ba ∈ Rda specifying state-action constraints, e.g., if Cs,
Ca are identity matrices, bs, ba limit state and action ranges.
Equations (3a), (3c), and (3d) describe the constrained regu-
lation problem under Gaussian disturbances (Bemporad et al.
2002; Stathopoulos, Korda, and Jones 2016), where the op-
timal policy is deterministic (Scokaert and Rawlings 1998).
We add a general constraint (3b). The Markovian transition
dynamics (3d) are linear, and the Gaussian noise ωt is non-
atomic, rendering the transition probabilities non-atomic. If ρ
is non-atomic, the underlying MDP of (3) is also non-atomic.
The reward function r(s, a) := s⊤G1s + a⊤R1a induces
a value function Vr(π), bounded within [rmin/(1 − γ), 0],
with rmin := b⊤s G1bs + b⊤a R1ba. Similarly, for u(s, a) :=
s⊤G2s+a⊤R2a, the utility value Vu is also bounded. There-
fore, this problem is an instance of Problem (1), assuming
the state space is bounded with ∥s∥ ≤ Smax.



3 Method and Theory
While our problem has zero duality gap, finding an optimal
dual λ⋆ poses a significant challenge, due to the presence
of multiple saddle points in the Lagrangian. To address it,
we resort to the regularization method. More specifically,
we introduce two regularizers. First, the term h(λ) := λ2

promotes convexity in the Lagrange multiplier λ. Second,
the term ha(a) := −∥a∥2 promotes concavity in the reward
function r by penalizing large actions selected by the policy
π. The associated value function is defined as Hπ(s) :=
Eπ [

∑∞
t=0 γ

tha(at) | s], and leads to the regularizer H(π) :=
Eρ[H

π(s)]. Now, we consider the problem

min
λ∈Λ

max
π∈Π

Lτ (π, λ) := Vλ(π) +
τ

2
H(π) +

τ

2
h(λ), (4)

where τ ≥ 0 is the regularization parameter and Lτ (π, λ)
is the regularized Lagrangian. For a fixed λ, the objective
of Problem (4) is equivalent to an unconstrained regularized
MDP plus a regularization of the dual variable. Consider
the composite regularized reward function rλ,τ (s, a) :=
r(s, a) + λg(s, a) − τ

2ha(a). The value function associ-
ated with the reward function rλ,τ can be expressed as
Vλ,τ (π) = Vλ(π) +

τ
2H(π). Then, we can reformulate the

regularized Lagrangian as Lτ (π, λ) := Vλ,τ (π) +
τ
2λ

2. The
global saddle points of the regularized Lagrangian Π⋆

τ × Λ⋆
τ

are guaranteed to exist; see Lemma 13 in Appendix C. More-
over, a global saddle point (π⋆

τ , λ
⋆
τ ) satisfies

Vλ⋆
τ
(π) +

τ

2
H(π) ≤ Vλ⋆

τ
(π⋆

τ ) ≤ Vλ(π
⋆
τ ) +

τ

2
λ2 (5)

for all (π, λ) ∈ Π×Λ. Hence, (π⋆
τ , λ

⋆
τ ) is also a global saddle

point of the original Lagrangian L(π, λ) up to two τ -terms.

3.1 Deterministic Policy Search Method
We propose a deterministic policy gradient primal-dual (D-
PGPD) method for finding a global saddle point (π⋆

τ , λ
⋆
τ ) of

Lτ (π, λ). In the primal update, as is customary in RL, we
maximize the advantage function rather than the value func-
tion directly. Specifically, we use the regularized advantage
Aπ

λ,τ (s, a) := Qπ
λ,τ (s, a) − V π

λ,τ (s) − τ
2 (∥a∥

2 − ∥π(s)∥2)
associated with the regularized reward rλ,τ . The primal up-
date (6a) performs a proximal-point-type ascent step that
solves a quadratic-regularized maximization sub-problem,
while the dual update (6b) performs a gradient descent step
that solves a quadratic-regularized minimization sub-problem

πt+1(s) = argmax
a∈A

Aπt

λt,τ
(s, a)− 1

2η
∥a− πt(s)∥2 (6a)

λt+1 = argmin
λ∈Λ

λ (Vg(πt) + τλt) +
1

2η
∥λ− λt∥2, (6b)

where η is the step-size. D-PGPD is a single-time-scale al-
gorithm, in the sense that the primal and the dual updates
are computed concurrently in the same time-step. We remark
that implementing D-PGPD is difficult in practice, and to
make it tractable, we will leverage function approximation in
Section 4. Before proceeding, we show that the primal-dual
iterates (6) converge in the last iterate to the set of global
saddle points of the regularized Lagrangian Π⋆

τ × Λ⋆
τ .

3.2 Non-Asymptotic Convergence
Finding deterministic optimal policies is a computationally
challenging problem (Feinberg 2000; Dolgov 2005). To ren-
der the problem tractable, we assume concavity and Lipschitz
continuity of the regularized action value functions.

Assumption 3 (Concavity). The regularized state-action
value function Qπ

λ,τ (s, a) − τ0∥π0(s) − a∥2 is concave in
action a for any policy π0 and some τ0 ∈ [0, τ).

Assumption 4 (Lipschitz continuity). The action-
value functions Qπ

r (s, a), Qπ
g (s, a), and Hπ(s, a) :=

Eπ [
∑∞

t=0 γ
tha(at) | s0 = s, a0 = a] are Lipschitz in action

a with Lipschitz constants Lr, Lg , and Lh, i.e.,

∥Qπ
r (s, a)−Qπ

r (s, a
′)∥ ≤ Lr∥a− a′∥

∥Qπ
g (s, a)−Qπ

g (s, a
′)∥ ≤ Lg∥a− a′∥

∥Hπ(s, a)−Hπ(s, a′)∥ ≤ Lh∥a− a′∥, ∀ a, a′ ∈ A.

Assumption 3 states that there exists a τ0-strongly concave
regularizer that renders Qπ

λ,τ concave in the action a. When
τ0 = 0, Qπ

λ,τ is concave in the action a. An example of this is
Problem (3), where the original reward and utility functions
are concave and the transition dynamics are linear, leading
to concavity of the associated regularized value function.
Assumption 4 implies Lipschitz continuity of the reward
function and the probability transition kernel, which holds
for several dynamics that can be expressed as a deterministic
function of the actual state-action pair and some stochastic
perturbation; see Appendix D.1 for a detailed explanation
over the example introduced in Section 2.2.

To show convergence of D-PGPD, we introduce first two
projection operators. The operator PΠ⋆

τ
projects a policy into

the non-empty set of optimal policies with state visitation
distribution d⋆ρ, and the operator PΛ⋆

τ
projects a Lagrangian

multiplier onto the non-empty set of optimal Lagrangian
multipliers Λ⋆

τ . Then, we characterize the convergence of the
primal-dual iterates of D-PGPD using a potential function

Φt :=
1

2
Ed⋆

ρ

[
∥PΠ⋆

τ
(πt(s))− πt(s)∥2

]
+
∥PΛ⋆

τ
(λt)− λt∥2

2(1 + η(τ − τ0))
,

which measures the distance between a iteration pair (πt, λt)
of D-PGPD and the set of global saddle points of the reg-
ularized Lagrangian Π⋆

τ × Λ⋆
τ . Theorem 2 shows that as t

increases, the potential function Φt decreases linearly, up to
an error; see Appendix C.4 for the proof.

Theorem 2 (Linear convergence). Let Assumptions 2–4 hold.
For η > 0 and τ > τ0, the primal-dual iterates (6) satisfy

Φt+1 ≤ e−β0 t Φ1 + β1 C
2
0 , where (7)

β0 :=
η(τ − τ0)

1 + η(τ − τ0)
and β1 :=

η(1 + η(τ − τ0))

τ − τ0

C0 := Lr + λmaxLg + τLh + τ
√
daAmax +

1 + τ
ξ

1− γ
.

Theorem 2 states that the primal-dual updates of D-PGPD
converge to a neighborhood of the set of global saddle points
of the regularized Lagrangian Π⋆

τ × Λ⋆
τ in a linear rate. The



size of the neighborhood depends polynomially on the pa-
rameters (Lr, Lg, Lh, Amax, τ ). When τ0 = 0, the regular-
ization parameter τ can be arbitrarily small. Reducing the
size of the convergence neighborhood can be achieved by
selecting a sufficiently small η. However, a smaller the value
of η leads to slower convergence. To be more specific, for
η = ϵ(τ − τ0)C

−2
0 , the size of the convergence neighbor-

hood is O(ϵ), and when t ≥ Ω(ϵ−1 log(ϵ−1)), the potential
function Φt is O(ϵ) too, where Ω encapsulates some problem-
dependent constants. After O(ϵ−1) iterations, the primal-dual
iterates (πt, λt) of D-PGPD are ϵ-close to the set Π⋆

τ × Λ⋆
τ .

The relationship between the solution to Problem (1) and
the solution to the regularized Problem (4) is given by Corol-
lary 1; see its proof in Appendix C.5.

Corollary 1 (Near-optimality). Let Assumptions 2–4 hold.
If η = O(ϵ4) and τ = O(ϵ2) + τ0, and t = Ω(ϵ−6log2ϵ−1),
then the primal-dual iterates (6) satisfy

Vr(π
⋆)− Vr(πt) ≤ ϵ− τ0H(π⋆)

Vg(πt) ≥ −ϵ+ τ0H(π⋆)(λmax − λ⋆)−1.

Corollary 1 highlights that the value functions correspond-
ing to the policy iterates of D-PGPD can closely approximate
the optimal solution to Problem (1). Specifically, in problems
where τ0 = 0, the final policy iterate of D-PGPD achieves
ϵ-optimality for Problem (1) after Ω(ϵ−6) iterations. When
τ0 > 0, D-PGDP converges to a saddle point of the original
problem. However, the proximity of the final policy iterate to
the optimal solution to Problem (1) is proportional to H(π⋆).

This work presents the first primal-dual convergence re-
sult for general constrained RL problems that directly work
with deterministic policies and continuous state-action spaces.
In the context of control, the convergence of different algo-
rithms for solving constrained problems has been analyzed
(Stathopoulos, Korda, and Jones 2016; Zhang et al. 2020;
Garg, Arabi, and Panagou 2020). However, these analyses
are limited to linear utility functions and box constraints. D-
PGPD is a general algorithm that can be used for a broad
range of transition dynamics and cost functions.

4 Function Approximation
To instantiate D-PGPD (6) with function approximation we
begin by expanding the objective in (6a) and dropping the
terms that do not depend on the action a,

Qπ
λ,τ (s, a) +

1

η
π(s)⊤a−

(
τ

2
+

1

2η

)
∥a∥2.

The usual function approximation approach (Agarwal et al.
2021; Ding et al. 2022) is to introduce a parametric estimator
of the policy π, and a compatible parametric estimator of
the action value function Qπ

λ,τ . Instead, we approximate the
augmented action-value function Jπ(s, a) := Qπ

λ,τ (s, a) +
1
ηπ(s)

⊤a using a linear estimator J̃θ(s, a) = ϕ(s, a)⊤θ over
the basis ϕ. At time t, we estimate Jπt(s, a) by computing
the parameters θt via a mean-squared-error minimization

θt := argmin
θ

E(s,a)∼ ν

[
∥ϕ(s, a)⊤θ − Jπt(s, a)∥2

]
, (8)

where ν is a pre-selected state-action distribution. Problem
(8) can be easily addressed using, e.g., stochastic approxima-
tion. A subsequent policy πt+1 results from a primal update
based on J̃θt . This leads to an approximated D-PGPD algo-
rithm (AD-PGPD) that updates πt and λt via

πt+1(s) = argmax
a∈A

J̃θt(s, a)−
(
τ

2
+

1

2η

)
∥a∥2 (9a)

λt+1 = argmin
λ∈Λ

λ(Vg(πt) + τλt) +
1

2η
∥λ− λt∥2. (9b)

Solving the sub-problem (9a) requires inverting the gra-
dient of (9a) with respect to a, which is a challenge when
the MDP model is unknown or the value functions cannot be
computed in closed form. This is the focus of Section 5.

4.1 Non-Asymptotic Convergence
To ease the computational tractability of AD-PGPD, we as-
sume concavity of the approximated augmented action-value
function and bounded approximation error.
Assumption 5 (Concavity of approximation). The function
J̃θt(s, a) − τ0∥π0(s) − a∥2 is concave with respect to the
action a for some arbitrary policy π0 and some τ0 ∈ [0, τ).
Assumption 6 (Approximation error). The approxima-
tion error δθt(s, a) is bounded, Es∼d⋆

ρ,a∼u[∥δθt(s, a)∥] ≤
ϵapprox

2(2Amax)da
, where u is the uniform distribution and ϵapprox ≥ 0

is a positive error constant.
The concavity of J̃θt(s, a) with respect to a depends on the

selection of the basis function ϕ. When the augmented action-
value function Jπt is a concave quadratic function, it can
be represented as a weighted linear combination of concave
and quadratic basis functions. If these basis functions are
known, Jπt can be perfectly approximated, i.e., ϵapprox = 0.
Furthermore, when Jπt is concave with respect to the action
a, the regularization parameter τ can be arbitrarily small.
Theorem 3 (Linear convergence). Let Assumptions 2, 4– 6
hold. If η > 0 and τ > τ0, the primal-dual iterates (9) satisfy

Φt+1 ≤ e−β0tΦ1 + β1C
2
0 + β2ϵapprox, (10)

where β0, β1, and C0 are defined in Theorem 2, and

β2 :=
1 + η(τ − τ0)

τ − τ0
.

Theorem 3 shows that the primal-dual iterates of AD-
PGPD converge to a neighborhood of Π⋆

τ ×Λ⋆
τ at a linear rate.

The result is similar to Theorem 2, up to an approximation er-
ror ϵapprox. In fact, when ϵapprox = 0, Theorem 3 is equivalent
to Theorem 2. Linear models can achieve ϵapprox = 0 when
the augmented action-value function Jπt can be expressed
as a linear combination of the selected basis function ϕ, e.g.
when Jπt is convex. When the error is small, the following
result relates Problem (1) to the regularized Problem (4).
Corollary 2 (Near-optimality of approximation). Let As-
sumptions 2 and 4–6 hold. If η = O(ϵ4), τ = O(ϵ2) + τ0,
ϵapprox = O(ϵ4), and t = Ω(ϵ−6log2ϵ−1), then the primal-
dual iterates (9) satisfy

Vr(π
⋆)− Vr(πt) ≤ ϵ− τ0H(π⋆)

Vg(πt) ≥ −ϵ+ τ0H(π⋆)(λmax − λ⋆)−1.



Corollary 2 states that Corollary 1 extends to function
approximation. When the approximation error is sufficiently
small, i.e., ϵapprox = O(ϵ4), the proof of Corollary 1 holds
(see Appendix C.5), and the value functions corresponding
to the policy iterates of AD-PGPD closely approximate an
optimal solution to Problem (1). In fact, when τ0 = 0 and
ϵapprox are small, then the last policy iterate of AD-PGPD is
an ϵ-optimal solution to Problem (1) after Ω(ϵ−6) iterations.

5 Model-Free Algorithm
When the model of the MDP is unknown or when value-
functions cannot be computed in closed form, we can lever-
age sample-based approaches to compute the primal and dual
iterates of AD-PGPD. To that end, we assume access to a
simulator of the MDP from where we can sample trajectories
given a policy π. The sample-based algorithm requires modi-
fying the policy evaluation step in (8), and the dual update in
(9b). For the former, in time-step t for a given policy πt, we
have the following linear function approximation problem

min
θ, ∥θ∥≤ θmax

Es,a∼ν

[
∥ϕ(sn, an)⊤θ − Ĵπt(sn, an)∥2

]
, (11)

where the parameters θ are bounded, i.e., ∥θ∥ ≤ θmax,
and ϕ is the basis function. The approximated augmented
value-function Ĵπt := Q̂πt

λ,τ (sn, an) +
1
ηπ(sn)

⊤an is es-
timated from samples, which comes down to approximat-
ing Q̂πt

λ,τ (sn, an). The dual update (9b) also requires the
approximated value-function V̂g(πt) to be estimated. We de-
tail how to estimate V̂g(πt) and Q̂πt

λ,τ (sn, an) via rollouts
in Algorithms 1 and 2, which can be found in Appendix
E. We use random horizon rollouts (Paternain et al. 2020;
Zhang et al. 2020) to guarantee that the stochastic estimates of
Q̂πt

λ,τ and V̂g(πt) are unbiased. From (Paternain et al. 2020,
Proposition 2), we have Qπt

λ,τ (s, a) = E[Q̂πt

λ,τ (s, a) | s, a]
and Vg(πt) = E[V̂ πt

g (s)], where the expectations E are
taken over the randomness of drawing trajectories following
πt. We solve Problem (11) at time t using projected stochastic
gradient descent (SGD),

g
(n)
t = 2

(
ϕ(sn, an)

⊤θ
(n)
t − Ĵπt(sn, an)

)
ϕ(sn, an)

θ
(n+1)
t = P∥θ∥≤ θmax

(
θ
(n)
t − αn g

(n)
t

)
, (12)

where n ≥ 0 is the iteration index, αn is the step-size, g(n)t is
the stochastic gradient of (11), and P∥θ∥≤θmax is an operator
that projects onto the domain ∥θ∥ ≤ θmax, which is convex
and bounded. Each projected SGD update (12) forms the
estimate θ̂t. We run N projected SGD iterations and form the
weighted average θ̂t :=

2
N(N+1)

∑N−1
n=0 (n+ 1)θ̂t, which is

the estimation of the parameters θt. Combining (9), the SGD
rule in (12), and averaging techniques lead to a sample-based
algorithm presented in Algorithm 3, in Appendix E.

The convergence analysis of Algorithm 3 has to account
for the estimation error induced by the sampling process. The
error δθ̂t(s, a) = J̃θ̂t(s, a) − Jπt(s, a) can be decomposed
as δθ̂t(s, a) = δθ̂t(s, a) − δθt(s, a) + δθt(s, a). The bias

error term δθt(s, a) is similar to the approximation error of
AD-PGPD and captures how good the model approximates
the true augmented value function. The term δθ̂t(s, a) −
δθt(s, a) is a statistical error that reflects the error introduced
by the sampling mechanism for a given state-action pair. To
deal with the randomness of the projected SGD updates, we
assume that the bias error and the feature basis are bounded.
We also assume that the feature covariance matrix is positive
definite, and that the sampling distribution ν and the optimal
state visitation frequency d⋆ρ are uniformly equivalent.
Assumption 7 (Bounded feature basis). The feature function
is bounded, i.e., ∥ϕ(s, a)∥ ≤ 1 for all s ∈ S and a ∈ A.
Assumption 8 (Positive covariance). The feature covari-
ance matrix Σν = Es,a∼ν [ϕ(s, a)ϕ(s, a)

⊤] is positive defi-
nite Σν ≥ κ0I for the state-action distribution ν.
Assumption 9 (Bias error). The bias error δθt(s, a) is
bounded Es∼d⋆

ρ,a∼u[∥δθt(s, a)∥] ≤ ϵbias
2(2Amax)da

, where u is
the uniform distribution and ϵbias is a positive error constant.
Assumption 10 (Uniformly equivalence). The state-action
distribution induced by the state-visitation frequency d⋆ρ and
the uniform distribution u is uniformly equivalent to the state-
action distribution ν, i.e.

d⋆ρ(s)u(a)

ν(s, a)
≤ Lν for all (s, a) ∈ S ×A.

Assumption 7 holds without loss of generality, as the basis
functions are a design choice. Assumption 8 ensures that
the minimizer of (11) is unique, since Σν ≥ κ0I for some
κ0 > 0. Assumption 9 states that the selected model achieves
a bounded error, and Assumption 10 ensures that the sam-
pling distribution ν is sufficiently representative of the opti-
mal state visitation frequency d⋆ρ. We characterize the conver-
gence using the expected potential function E[Φt], where the
expectation is taken over the randomness of θ(n)t . We have
the following corollary; see the proof in Appendix C.7.
Corollary 3 (Linear convergence). Let Assumptions 2, 4,
5, and 7–10 hold. Then, the sample-based AD-PGPD in
Algorithm 3 satisfies

E[Φt+1] ≤ e−β0tE[Φ1]+β1C
2
0+β2

(
C2

1

η2(N + 1)
+ ϵbias

)
,

(13)
where β0, β1, β2, and C0 are given in Theorems 2 and 3, and

C1 :=

√
2da+5Ada

maxLν

(
θmax+2(1−γ)−2ξ−1+daA

2
max

)
κ−1
0 .

Corollary 3 is analogous to Theorem 3, but accounting
for the use of sample-based estimates. The sampling effect
appears as the number N of projected SGD steps performed
at each time-step t. Corollary 2 holds when the bias error
ϵbias = O(ϵ4) and the estimation error C2

1η
−2(N + 1)−1 =

O(ϵ4). As η = O(ϵ4), the latter holds when N = Ω(ϵ−12),
where Ω encapsulates problem-dependent constants. There-
fore, the number of rollouts required to output an ϵ-optimal
policy is tN = Ω(ϵ−18). While this result suggests potential
improvement, it stands as the first sample-complexity result
in the context of constrained MDPs with continuous spaces.



Figure 1: Navigation trajectories of an agent (Left) and ve-
locity profile of the fluid over time (Right).

6 Computational Experiments
We test D-PGPD on constrained robot navigation and fluid
control problems (Figure 1). See Appendix F for more details.
Navigation Problem. An agent moves in a horizontal plane
following some linearized dynamics with zero-mean Gaus-
sian noise (Shimizu et al. 2020; Ma et al. 2022). We aim to
drive the agent to the origin while constraining its velocity.
When the dynamics are known and the reward function lin-
early weights quadratic penalties on position and action, this
problem is an instance of the constrained linear regulation
problem (Scokaert and Rawlings 1998), which has closed-
form solution. Hence, we can directly apply D-PGPD (6) and
AD-PGPD (9) (See Appendix F.1). However, we consider
the dynamics to be unknown, and we leverage our sample-
based implementation of AD-PGPD. Furthermore, we use
absolute value penalties instead of quadratic ones, as the
latter can result in unstable behavior in sample-based sce-
narios (Engel and Babuška 2014). Conventional methods do
not solve this problem straightforwardly. We compare our
sample-based AD-PGPD with PGDual, a dual method with
linear function approximation (Zhao and You 2021; Brunke
et al. 2022). Figure 2 shows the value functions of the policy
iterates generated by AD-PGPD and PGDual over 40, 000
iterations. The oscillations of AD-PGPD are damped over
time, and it converges to a feasible solution with low variance
in reward and utility, indicating a near-deterministic behavior
without constraint violation. In contrast, PGDual exhibits
large variance, indicating that the resultant policy violates the
constraint. Nevertheless, the final primal return performance
of PGDual is similar to that of AD-PGPD on average.
Fluid Velocity Control. We apply D-PGPD (6) to the con-
trol of the velocity of an incompressible Newtonian fluid
described by the one-dimensional Burgers’ equation (Baker,
Armaou, and Christofides 2000), a non-linear stochastic con-
trol problem. The velocity profile of the fluid z varies in a
one-dimensional space x ∈ [0, 1] and time t ∈ [0, 1], and
the goal is to drive the velocity of the fluid towards zero
via the control action a, e.g., injection of polymers. By dis-
cretizing Burgers’ equation, we have a non-linear system
st+1 = B0st + B1at + B2s

2
t + ωt, where st ∈ Rd is the

state, s2t is the element-wise squared state vector, at ∈ Rd

is the control input, and B0, B1, B2 ∈ Rd×d are matrices
representing the discretized spatial operators and non-linear

Figure 2: Avg. reward/utility value functions of AD-PGPD
( ) and PGDual ( ) iterates in the navigation problem.

Figure 3: Avg. reward/utility value functions of AD-PGPD
( ) and PGDual ( ) iterates in a fluid velocity control.

terms (Borggaard and Zietsman 2020). The details can be
found in Appendix F. We consider a reward function that
penalizes the state quadratically, and a budget constraint that
limits the total control action. We compare our sample-based
AD-PGPD with PGDual. Figure 3 shows the value functions
of the policy iterates generated by AD-PGPD and PGDual
over 10, 000 iterations. The results are consistent with those
of the navigation problem. The AD-PGPD algorithm suc-
cessfully mitigates oscillations and converges to a feasible
solution with low return variance. In contrast, although PG-
Dual achieves similar objective value, it does not dampens
oscillations, as indicated by the variance of the solution. This
implies that PGDual violates the constraint in the last iterate.

7 Concluding Remarks
We have presented a deterministic policy gradient primal-dual
method for continuous state-action constrained MDPs with
non-asymptotic convergence guarantees. We have leveraged
function approximation to make the implementation practical
and developed a sample-based algorithm. Furthermore, we
have shown the effectiveness of the proposed method in navi-
gation and non-linear fluid constrained control problems. Our
work opens new avenues for constrained MDPs with continu-
ous state-action spaces, such as (i) minimal assumption on
value functions; (ii) online exploration; (iii) optimal sample
complexity; and (iv) general function approximation.

Appendix
All the theoretical proofs and additional materials referenced
in this paper, the supplementary experiments and introduc-
tions to key concepts are included in the extended version of
the paper, available at https://arxiv.org/abs/2408.10015.
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2022. Convergence and sample complexity of natural policy
gradient primal-dual methods for constrained MDPs. arXiv
preprint arXiv:2206.02346.
Dolgov, D. 2005. Stationary Deterministic Policies for Con-
strained MDPs with Multiple Rewards, Costs, and Discount
Factors. In International Joint Conference on Artificial Intel-
ligence.
Efroni, Y.; Mannor, S.; and Pirotta, M. 2020. Exploration-
exploitation in constrained MDPs. arXiv preprint
arXiv:2003.02189.
Engel, J.-M.; and Babuška, R. 2014. On-Line Reinforcement
Learning for Nonlinear Motion Control: Quadratic and Non-
Quadratic Reward Functions. IFAC Proceedings Volumes,
47(3): 7043–7048.
Feinberg, E. A. 2000. Constrained Discounted Markov De-
cision Processes and Hamiltonian Cycles. Mathematics of
Operations Research, 25(1): 130–140.
Feinberg, E. A.; and Piunovskiy, A. 2019. Sufficiency of De-
terministic Policies for Atomless Discounted and Uniformly
Absorbing MDPs with Multiple Criteria. SIAM Journal on
Control and Optimization, 57(1): 163–191.
Feinberg, E. A.; and Piunovskiy, A. B. 2002. Nonatomic
Total Rewards Markov Decision Processes with Multiple
Criteria. Journal of Mathematical Analysis and Applications,
273(1): 93–111.
Gao, X.; Yan, L.; Li, Z.; Wang, G.; and Chen, I.-M. 2023.
Improved Deep Deterministic Policy Gradient for Dynamic
Obstacle Avoidance of Mobile Robot. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 53(6): 3675–3682.
Garg, K.; Arabi, E.; and Panagou, D. 2020. Prescribed-Time
Convergence with Input Constraints: A Control Lyapunov
Function Based Approach. In American Control Conference,
962–967.
Kakade, S.; Krishnamurthy, A.; Lowrey, K.; Ohnishi, M.;
and Sun, W. 2020. Information Theoretic Regret Bounds for
Online Nonlinear Control. Advances in Neural Information
Processing Systems, 33: 15312–15325.
Kumar, H.; Kalogerias, D. S.; Pappas, G. J.; and Ribeiro, A.
2020. Zeroth-Order Deterministic Policy Gradient. arXiv
preprint arXiv:2006.07314.
Lan, G. 2022. Policy Optimization over General State and
Action Spaces. arXiv preprint arXiv:2211.16715.
Li, G.; Li, S.; Li, S.; and Qu, X. 2022. Continuous Decision-
Making for Autonomous Driving at Intersections Using Deep
Deterministic Policy Gradient. IET Intelligent Transport
Systems, 16(12): 1669–1681.
Li, Z.; Liu, B.; Yang, Z.; Wang, Z.; and Wang, M. 2023.
Double Duality: Variational Primal-Dual Policy Optimization
for Constrained Reinforcement Learning. Journal of Machine
Learning Research, 24(385): 1–43.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
Control with Deep Reinforcement Learning. arXiv preprint
arXiv:1509.02971.



Lim, A. E.; and Zhou, X. Y. 1999. Stochastic Optimal LQR
Control with Integral Quadratic Constraints and Indefinite
Control Weights. IEEE Transactions on Automatic Control,
44(7): 1359–1369.
Ma, J.; Cheng, Z.; Zhang, X.; Tomizuka, M.; and Lee, T. H.
2022. Alternating Direction Method of Multipliers for Con-
strained Iterative LQR in Autonomous Driving. IEEE Trans-
actions on Intelligent Transportation Systems, 23(12): 23031–
23042.
Mandhane, A.; Zhernov, A.; Rauh, M.; Gu, C.; Wang, M.;
Xue, F.; Shang, W.; Pang, D.; Claus, R.; Chiang, C.-H.; et al.
2022. MuZero with Self-Competition for Rate Control in
VP9 Video Compression. arXiv preprint arXiv:2202.06626.
McMahan, J. 2024. Deterministic Policies for Constrained
Reinforcement Learning in Polynomial-Time. arXiv preprint
arXiv:2405.14183.
Montenegro, A.; Mussi, M.; Metelli, A. M.; and Papini,
M. 2024a. Learning Optimal Deterministic Policies with
Stochastic Policy Gradients. In International Conference on
Machine Learning.
Montenegro, A.; Mussi, M.; Papini, M.; and Metelli, A. M.
2024b. Last-iterate global convergence of policy gradi-
ents for constrained reinforcement learning. arXiv preprint
arXiv:2407.10775.
Moskovitz, T.; O’Donoghue, B.; Veeriah, V.; Flennerhag,
S.; Singh, S.; and Zahavy, T. 2023. Reload: Reinforcement
Learning with Optimistic Ascent-Descent for Last-Iterate
Convergence in Constrained MDPs. In International Confer-
ence on Machine Learning, 25303–25336.
Paternain, S.; Bazerque, J. A.; Small, A.; and Ribeiro, A.
2020. Stochastic Policy Gradient Ascent in Reproducing
Kernel Hilbert Spaces. IEEE Transactions on Automatic
Control, 66(8): 3429–3444.
Paternain, S.; Calvo-Fullana, M.; Chamon, L. F.; and Ribeiro,
A. 2022. Safe Policies for Reinforcement Learning via
Primal-Dual Methods. IEEE Transactions on Automatic
Control, 68(3): 1321–1336.
Paternain, S.; Chamon, L.; Calvo-Fullana, M.; and Ribeiro,
A. 2019. Constrained Reinforcement Learning Has Zero
Duality Gap. Advances in Neural Information Processing
Systems, 32.
Posa, M.; Kuindersma, S.; and Tedrake, R. 2016. Optimiza-
tion and Stabilization of Trajectories for Constrained Dynam-
ical Systems. In IEEE International Conference on Robotics
and Automation, 1366–1373.
Ross, K. W. 1989. Randomized and Past-Dependent Policies
for Markov Decision Processes with Multiple Constraints.
Operations Research, 37(3): 474–477.
Scokaert, P. O.; and Rawlings, J. B. 1998. Constrained Lin-
ear Quadratic Regulation. IEEE Transactions on Automatic
Control, 43(8): 1163–1169.
Sehnke, F.; Osendorfer, C.; Rückstieß, T.; Graves, A.; Peters,
J.; and Schmidhuber, J. 2010. Parameter-exploring policy
gradients. Neural Networks, 23(4): 551–559.
Shimizu, Y.; Zhan, W.; Sun, L.; Chen, J.; Kato, S.; and
Tomizuka, M. 2020. Motion Planning for Autonomous

Driving with Extended Constrained Iterative LQR. In Dy-
namic Systems and Control Conference, volume 84270,
V001T12A001.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; and
Riedmiller, M. 2014. Deterministic Policy Gradient Algo-
rithms. In International Conference on Machine Learning,
387–395.
Singh, R.; Gupta, A.; and Shroff, N. B. 2022. Learning in
constrained Markov decision processes. IEEE Transactions
on Control of Network Systems, 10(1): 441–453.
Stathopoulos, G.; Korda, M.; and Jones, C. N. 2016. Solv-
ing the Infinite-Horizon Constrained LQR Problem Using
Accelerated Dual Proximal Methods. IEEE Transactions on
Automatic Control, 62(4): 1752–1767.
Tessler, C.; Mankowitz, D. J.; and Mannor, S. 2018. Re-
ward Constrained Policy Optimization. arXiv preprint
arXiv:1805.11074.
Tsiamis, A.; Kalogerias, D. S.; Chamon, L. F.; Ribeiro, A.;
and Pappas, G. J. 2020. Risk-Constrained Linear-Quadratic
Regulators. In IEEE Conference on Decision and Control,
3040–3047. IEEE.
Zahavy, T.; O’Donoghue, B.; Desjardins, G.; and Singh, S.
2021. Reward is Enough for Convex MDPs. Advances in
Neural Information Processing Systems, 34: 25746–25759.
Zhang, K.; Koppel, A.; Zhu, H.; and Basar, T. 2020. Global
Convergence of Policy Gradient Methods to (Almost) Locally
Optimal Policies. SIAM Journal on Control and Optimization,
58(6): 3586–3612.
Zhao, F.; and You, K. 2021. Primal-Dual Learning for the
Model-Free Risk-Constrained Linear Quadratic Regulator.
In Learning for Dynamics and Control, 702–714.
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